
Abstract. The failure of chemotherapy and radiation
therapy to achieve long-term remission or cure in patients
with glioblastoma (GBM) is, in a large part, due to the
suppression of the immune system induced by the tumors
themselves. These tumors adapt to treatment with
chemotherapy or radiation therapy by stimulating secretion
of molecules that cause tryptophan metabolism to be
disrupted. Indoleamine 2,3-dioxygenase (IDO) and
tryptophan 2,3-dioxygenase (TDO) are produced,
accelerating metabolism along the kynurenine pathway and
resulting in excess levels of quinolinic acid, 3-
hydroxyanthranilic acid and other neurotoxic molecules.
IDO and TDO also act as checkpoint molecules that
suppress T-cell function. GBM is particularly associated with
severe immunosuppression, and this tumor type might be
thought to be the ideal candidate for checkpoint inhibitor
therapy. However, treatment with checkpoint inhibitors now
in clinical use for peripheral solid tumors, such as those
inhibiting cytotoxic T-lymphocyte-associated protein-4
(CTLA4) or programmed cell death-1 (PD1) receptors,
results in further abnormalities of tryptophan metabolism.
This implies that to obtain optimal results in the treatment
of GBM, one may need to add an inhibitor of the kynurenine
pathway to therapy with a CTLA4 or PD1 inhibitor, or use
agents which can suppress multiple checkpoint molecules.

Glioblastoma multiforme (GBM) is a highly malignant primary
brain tumor with a very poor prognosis. Median survival is 15
months. Two-year survival is less than 30% and only 5% of
patients survive 5 years (1, 2). Genetic abnormalities, both
inherited and acquired, are common, and there is a proven
association of GBM with tuberous sclerosis, von
Recklinghausen’s disease, Lynch syndrome and Li-Fraumeni
syndrome. importantly, patients with asthma, eczema, hay fever
and other allergies have as much as a 40% reduced risk of
developing GBM, while patients with AiDs have an increased
risk (2-4). it is well known that GBM is associated with systemic
immunosuppression, and that much of this immunosuppression
is caused by the GBM cells themselves (5-10). current standard
first-line treatment of GBM is surgery, if possible, followed 
by radiation therapy and the chemotherapy drug, temozolomide
(11-13). second-line treatment with nitrosoureas, avastin
(bevacizumab), irinotecan, or combinations of some of these
agents, has only minor activity, resulting in progression-free
survival (pFs) of about 3-6 months and overall survival (os) of
4-8 months (14-18). A number of new, promising treatment
approaches are under investigation, but, unfortunately, none has
yet proven to be an advance in GBM treatment (19-23).
Additionally, the strategy of using chemotherapy in an attempt
to cure GBM may be self-defeating, as chemotherapeutic agents
may increase the immunosuppressive activity of GBM cells,
causing recurrence (5, 24, 25).

Tryptophan Metabolites

Tryptophan is an essential amino acid and an important
precursor of serotonin, melatonin and nicotinamide adenine
dinucleotide (26, 27). Abnormal or unbalanced tryptophan
metabolism plays a role in numerous diseases, including
Alzheimer’s disease (28), parkinson’s disease (29),
Huntington’s chorea (30), psychiatric disorders (31), as well
as in cardiovascular disease (32) and diabetes (33). in the
brain, for example, excess levels of the tryptophan
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metabolite, quinolinic acid (see Figures 1 and 2), can cause
neuronal death by, among other mechanisms, acting as an N-
methyl-D-aspartate (NMDA) agonist and disrupting the
glutamate-glutamine cycle (34-37). Abnormal glutamate
metabolism results in direct toxicity to brain cells (38-40).
Quinolinic acid potentiates lipid peroxidation (37), resulting
in damage to cell membranes. This metabolite also
stimulates nitric acid synthase production by neurons, thus
increasing free radical production (35, 37). Numerous other
mechanisms by which quinolinic acid causes neurotoxicity
have been described (41). Quinolinic acid appears to be
particularly toxic to the striatum, partially explaining the role
of the kynurenine pathway in both Huntington’s chorea and
parkinson’s disease (36, 42-44). other tryptophan
metabolites, including 3-hydroxykynurenine and 3-
hydroxyanthranilic acid, also have neurotoxic effects.
Relative deficiencies of tryptophan, consistent with increased
metabolism, are known to cause increased levels of
ceramides and caspase-3 activation, resulting in cell

apoptosis (45), and the kynurenine pathway is intimately
involved in sphingolipid/ceramide metabolism (46). 

Besides their neurotoxic effects, these tryptophan
metabolites are known to cause cancer development and
progression. Deranged tryptophan metabolism has been
shown to be important in numerous types of cancer (47-52).
Furthermore, the extent of the abnormality in tryptophan
metabolism has been shown to correlate with the
aggressiveness of the cancer (53-55). For example, ino et al.
showed that increased activity of the kynurenine pathway
inversely correlated with both os and pFs in patients with
endometrial cancer (47). Heng et al. have shown that
increased activity of the kynurenine pathway is associated
with an unfavorable prognosis in patients with breast cancer
(54). on the other hand, sordillo et al. reported that increased
tryptophan fluorescence with excitation wavelengths of 280
and 300 nm can distinguish cancer from adjoining normal
tissue (56). others have reported similar findings (57-59). We
have also shown that increased tryptophan fluorescence
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Figure 1. Tryptophan metabolism through the serotonin/melatonin pathway.



correlates strongly with increased breast cancer grade (60).
pu et al. reported increased tryptophan fluorescence from cell
lines derived from highly aggressive prostate cancers
compared to lines derived from less aggressive prostate
cancers (61). other techniques have given similar results.
Zhou et al. used resonance Raman spectroscopy to show
increasing tryptophan (1588 cm−1 mode, 532 nm excitation)
in gliomas as the stage of these tumors increased from stage
1 to stage 4 (glioblastoma) (62). Yoracu et al. noted that it is
the tryptophan buried within folded proteins, rather than
exposed tryptophan, that accounts for tryptophan fluorescence
(63). This may account for the consistent finding of increased
tryptophan fluorescence in cancerous tissues in the face of
accelerated tryptophan metabolism in patients with cancer.

Pro-inflammatory Cytokines and 
Indoleamine 2,3-Dioxygenase 

The major cause of abnormal tryptophan metabolism in
patients with GBM is an increased release of pro-

inflammatory cytokines. it is well known that under stress
conditions, major pro-inflammatory cytokines, such as tumor
necrosis factor-alpha (TNFα), interleukin-1beta (iL1β), iL6
and interferon-γ (iFNγ) are released, both within the brain
and in the periphery. increases in these cytokines are known
to be associated with many neurological conditions (64-67),
as well as with many other diseases. Furthermore, high levels
of these cytokines in the brain are associated with an
increased severity of these diseases. For example, an
elevated level of iL6 is correlated with increased mortality
in patients with parkinson’s disease (65). in experimental
models of Huntington’s chorea, reducing levels of TNFα has
therapeutic benefit (66). TNFα, iL1β, iL6, and other
cytokines may be increased massively in the brain after
traumatic brain injury, thousands of times more than
corresponding levels in blood, and these increases are
correlated with the severity of the traumatic brain injury
(68). Yan et al. have shown that the degree of elevation of
quinolinic acid also correlates with the degree of severity of
brain injury (69). Likewise, although these pro-inflammatory
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Figure 2. Tryptophan metabolism through the kynurenine pathway.



cytokines also have anticancer effects, they are involved
intimately in cancer development, progression and metastasis
(70-73). Bai et al. showed that TNFα, iL1β and iL6
promoted metastasis after surgery for primary hepatocellular
carcinoma (70). increased secretion of pro-inflammatory
cytokines plays a particularly important role in GBM
development and resistance to therapy (74-76). An important
mechanism by which these cytokines cause and worsen these
diseases is through of the kynurenine pathway (77-80).
campbell et al. showed that iFNγ activates the kynurenine
pathway, and TNFα, iL1β and iL6 are synergistic with iFNγ
in stimulating this pathway (77). Asp et al. emphasized the
important role of iFNγ in stimulating this pathway in dermal
fibroblasts (78). Zuo et al. showed that increases in
inflammatory markers, and, in particular, increases in iFNγ-
related inflammatory markers, correlated with increased
levels of tryptophan metabolites, and also with increased
mortality from neurodegenerative diseases and cancer (79).
chung and Gadupudi describe a number of ways these
compounds have mutagenic properties, such as interaction
with nitrites to form nitrosamine, or interaction with
transition metals to form reactive oxygen species (50). Not
only does abnormal glutamate metabolism caused by NDMA
activity after increased production of these tryptophan
metabolites result in neurotoxicity, glutamate can also act as
a growth factor for cancer, which takes up this amino acid
preferentially compared to normal cells (81-84).

perhaps most importantly, metabolites of tryptophan such
as quinolinic acid and 3-hydoxyanthranilic acid inhibit T-cell
function, allowing tumor growth and metastasis (54, 85-89).
Fallarino et al. showed that kynurenine metabolites,
especially quinolinic acid and 3-hydroxyanthranilic acid,
cause death of helper T1 (Th1) cells even at low doses, while
sparing Th2 cells (85). Frumento et al. reported similar
results and emphasized the important role of the enzyme
indoleamine 2,3-dioxygenase (iDo) (87). As noted, this key
enzyme is stimulated primarily by interferon-γ (90-94), and
interferon-γ-induced activation of iDo appears to be the
critical, necessary step in the initiation of kynurenine
pathway induction of immunosuppression (90). iDo is
ubiquitous in tissues, and after stimulation by interferon-γ,
catalyzes the first step in this pathway, the conversion of
tryptophan to N-formyl-L-kynurenine (86, 88, 90, 94). it is
also widely expressed in human cancers, and its expression
correlates with tumor progression and a shorter patient
survival (95). As prendergast has noted, cancers “eat”
tryptophan in order to escape the immune system (53).

Indoleamine 2,3-Dioxygenase and 
Tryptophan 2,3-Dioxygenase

iDo is heme-containing enzyme which can degrade
tryptophan by cleaving its aromatic indole ring (86). Two

forms of this enzyme exist, iDo1 and iDo2. These enzymes
are structurally similar, and the genes that encode them are
situated next to each other on chromosome 8 (86, 96). iDo1
is expressed in a wide variety of tissues, including dendritic
cells, endothelial cells, macrophages, fibroblasts and
mesenchymal stromal cells, as well as in neurons and in
cancer cells themselves. iDo2 is primarily expressed in the
kidney, brain, colon, liver and reproductive tract (86, 95-98).
iDo is critically important in inducing immune tolerance
during pregnancy, and in protecting normal tissues against
the immune system through its regulatory effects on T-cells
(99-102). it has been shown to suppress T-lymphocyte-
mediated graft rejection (95, 103). However, although this
enzyme may play an important role in tumor apoptosis (93),
iDo can also cause T-cell suppression after neoplastic
transformation by acting as a checkpoint molecule, thus
preventing the immune system from mounting an effective
attack against the cancer (104-109). The local tryptophan
deficiency induced by iDo stimulates the general control
non-depressable-2 kinase pathway which alters protein
translation and prevents T-lymphocyte activation (95). Moon
et al. note that iDo inhibits activity of mechanistic target of
rapamycin (mToR), which leads to T-lymphocyte anergy
(104). other mechanisms by which iDo causes
immunosuppression have been described (95, 99, 104). 

A third, distinct enzyme, tryptophan 2,3-dioxygenase
(TDo), has the same effect as iDo1 and iDo2 as the initial
step in the kynurenine pathway, converting L-tryptophan into
N-formyl-L-kynurenine. Like iDo, this enzyme is important
in the maintenance of self-tolerance (110). TDo has been
found to have a role in numerous neurological diseases,
including Alzheimer’s disease, parkinson’s disease and
autism, and suppression of TDo appears to reduce
neurodegeneration (111-114). increased TDo activity is
associated with cancer growth (115-117), as well as with
increased tumor grade and decreased survival in triple-
negative breast cancer cells (118). 

Immune Checkpoint Inhibitors: Monotherapy

The failure of traditional approaches to have a significant
impact on survival in patients with GBM suggests new
strategies are necessary in the treatment of this cancer. one
strategy which has had partial success against cancers other
than GBM is to unleash the immune system by inhibition of
immune checkpoint molecules. The most important checkpoint
molecules are cytotoxic T-lymphocyte-associated protein 4
(cTLA4), programmed cell death-1 receptor (pD1) and iDo,
and these checkpoint molecules are especially important in
causing the profound immunosuppression associated with
GBM (119-121). Grossauer et al. pointed out that all three of
these checkpoint molecules are expressed at very high levels
in GBM, that GBMs express much higher levels of these
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checkpoint molecules than do low-grade gliomas, and that
there is a close inverse correlation of these levels with
survival. These checkpoint molecules are also crucial in
protecting GBM stem cells (120). other checkpoint molecules
under investigation include T-cell immunoglobulin domain
and mucin domain 3 (TiM3) (122), lymphocyte activation
gene-3 (LAG3) (123), killer-cell immunoglobulin-like receptor
(KiR) (124) and V-domain ig suppressor of T-cell activation
(VisTA) (125). checkpoint inhibitors are now in widespread
clinical use against a wide variety of cancer types. ipilimumab
(yervoy) is a standard treatment for patients with malignant
melanoma (median os=10.1 months even in heavily pre-
treated patients, with some patients now having long-term
survival), and is currently being investigated for the treatment
of patients with non-small cell lung carcinoma (126, 127). The
pD1 inhibitors, nivolumab (opdivo) and pembrolizumab
(keytruda), and the programmed-death ligand-1 (pDL1)
inhibitor atezolizumab (tecentrig), have major antitumor
activity against multiple cancer types, including renal cell
carcinoma, malignant melanoma, relapsed Hodgkin’s disease,
bladder cancer and non-small cell lung carcinoma (128-132).
Nevertheless, a large majority of patients do not respond to
these treatments and there can be considerable toxicity,
including grade 3 and 4 pneumonitis, colitis and hepatitis in a
significant number of patients.

Because of the profound immunosuppression caused by
checkpoint molecules in GBM, checkpoint inhibitor therapy
might be hypothesized to be the ideal type of therapy for this
cancer. However, despite some promising pre-clinical results
(5, 133, 134), early studies with pD1, pDL1 or cTLA4
inhibitors against GBM have, at least as monotherapy, not
yet fulfilled this promise (120, 135-139). Grossauer et al.
noted that neither cTLA4 inhibition nor pD1 inhibition
increased efficacy against GBM when used as monotherapy
(120). schaff et al. reported only stable disease or
progressive disease and no major or minor responses, a
median pFs of only 2.8 months and an os of 5.1 months in
patients with recurrent GBM receiving ipilimumab (135).
These results are consistent with experimental data. Zeng et
al. studied mice implanted intracranially with GL 261 glioma
cells. Mice treated with a pD1 inhibitor survived 27 days
compared to controls who survived 25 days. Mice treated
with a pD1 inhibitor plus radiation therapy survived 53 days
(137). The less than expected activity of these inhibitors
against GBM may be because, in this tumor in particular, the
checkpoint inhibitor effects of these treatments are overcome
by the immunosuppressive effects of other checkpoint
molecules, the most important of which is iDo. 

Inhibitors of the Kynurenine Pathway

Numerous iDo inhibitors are under investigation (140).
Many medications and hundreds of natural products (141)

also have anti-iDo activity (Tables i and ii). A few studies
of iDo inhibitors against GBM have been carried out and
these agents do show some activity as single agents. Miyazaki
et al. showed the iDo inhibitor 1-methyl L-tryptophan (1MT)
prevented tryptophan consumption and suppressed the growth
of LN 229 glioma cells (192). Hanihara et al. reported 1MT
significantly suppressed tumor growth in a murine glioma
model. 1MT also had synergistic effects with temozolomide
(193). Li et al. showed that mice bearing intracranial GL 261
glioblastoma tumors that were treated with 1MT added to
radiation therapy plus temozolomide and cytoxan, survived
longer than mice treated with chemotherapy and radiation
therapy alone (194). interestingly, mice deficient in the
complement component c3 did not experience increased
survival after addition of 1MT (194). one agent, indoximod,
the D-isomer of 1MT and a selective inhibitor of iDo2 (97,
195) is currently in clinical trials in combination with either
temozolomide or bevacizumab for patients with GBM
refractory to initial therapy, and a few objective responses
have been seen (196, 197).

The importance of the kynurenine pathway as a mechanism
of resistance to cTLA4 therapy has been shown in studies of
other cancer types. Holmgaard et al. reported that ido-
knockout mice implanted with B16F10 melanoma cells had
slower tumor growth and a markedly prolonged survival
compared to wild-type mice. This effect was duplicated by the
addition of an iDo inhibitor to cTLA4 inhibitor therapy
(198). The increased antitumor effects correlated with
increased T-effector to T-regulatory (Treg) ratios in the tumors.
As noted, GBM tumors secrete high levels of iDo (119, 121).
GBMs express significantly higher iDo levels than do low-
grade gliomas, and iDo expression negatively correlates with
survival (199, 200). Wainright et al. injected iDo-deficient
and iDo-competent glioma cells into the cerebral hemispheres
of mice, and demonstrated that the mice with iDo-deficient
glioma cells survived far longer. The authors also showed that
the addition of an iDo inhibitor to pD1 and cTLA4 inhibitors
reversed the resistance to checkpoint inhibition, increasing T-
cell activity, reducing the number of Treg cells and extending
survival in mice with GBM. This effect was not seen in mice
with intracranial melanoma, suggesting iDo inhibition would
be more effective in a cancer dependent on stimulation of Treg
cells, such as GBM (201).

As with cTLA4 inhibitors and pD1 inhibitors, the optimal
use of iDo inhibitors may be in combination with other
checkpoint inhibitors to give a more complete stimulation of
the immune system. Additionally, the use of agents that can
inhibit more than one checkpoint molecule should be
investigated. it should be remembered that although these
agents inhibit multiple checkpoint molecules, they may not
be potent enough in the doses received to induce responses
on their own, and thus also might be optimally used in
combination with other agents.
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